In [1]:
%pylab inline
Populating the interactive namespace from numpy and matplotlib
In [14]:
from tempfile import NamedTemporaryFile
#import base64

VIDEO_TAG = """<video controls>
 <source src="data:video/x-m4v;base64,{0}" type="video/mp4">
 Your browser does not support the video tag.
</video>"""

def anim_to_html(anim):
    if not hasattr(anim, '_encoded_video'):
        with NamedTemporaryFile(suffix='.mp4') as f:
            anim.save(f.name, writer='mencoder', fps=20) #extra_args=['-vcodec', 'libx264'])
            video = open(f.name, "rb").read()
        anim._encoded_video = video.encode("base64")
    
    return VIDEO_TAG.format(anim._encoded_video)
In [15]:
from IPython.display import HTML

def display_animation(anim):
    plt.close(anim._fig)
    return HTML(anim_to_html(anim))
In [16]:
from matplotlib import animation

# First set up the figure, the axis, and the plot element we want to animate
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)

# initialization function: plot the background of each frame
def init():
    line.set_data([], [])
    return line,

# animation function.  This is called sequentially
def animate(i):
    x = np.linspace(0, 2, 1000)
    y = np.sin(2 * np.pi * (x - 0.01 * i))
    line.set_data(x, y)
    return line,

# call the animator.  blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init,
                               frames=100, interval=20, blit=True)

# call our new function to display the animation
display_animation(anim)
Out[16]:
In [17]:
#! /usr/bin/env python2.7
# Double pendulum formula translated from the C code at
# http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c

from numpy import sin, cos, pi, array
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import matplotlib.animation as animation

G =  9.8 # acceleration due to gravity, in m/s^2
L1 = 1.0 # length of pendulum 1 in m
L2 = 1.0 # length of pendulum 2 in m
M1 = 1.0 # mass of pendulum 1 in kg
M2 = 1.0 # mass of pendulum 2 in kg


def derivs(state, t):

    dydx = np.zeros_like(state)
    dydx[0] = state[1]

    del_ = state[2]-state[0]
    den1 = (M1+M2)*L1 - M2*L1*cos(del_)*cos(del_)
    dydx[1] = (M2*L1*state[1]*state[1]*sin(del_)*cos(del_)
               + M2*G*sin(state[2])*cos(del_) + M2*L2*state[3]*state[3]*sin(del_)
               - (M1+M2)*G*sin(state[0]))/den1

    dydx[2] = state[3]

    den2 = (L2/L1)*den1
    dydx[3] = (-M2*L2*state[3]*state[3]*sin(del_)*cos(del_)
               + (M1+M2)*G*sin(state[0])*cos(del_)
               - (M1+M2)*L1*state[1]*state[1]*sin(del_)
               - (M1+M2)*G*sin(state[2]))/den2

    return dydx

# create a time array from 0..100 sampled at 0.1 second steps
dt = 0.05
t = np.arange(0.0, 20, dt)

# th1 and th2 are the initial angles (degrees)
# w10 and w20 are the initial angular velocities (degrees per second)
th1 = 120.0
w1 = 0.0
th2 = -10.0
w2 = 0.0

rad = pi/180

# initial state
state = np.array([th1, w1, th2, w2])*pi/180.

# integrate your ODE using scipy.integrate.
y = integrate.odeint(derivs, state, t)

x1 = L1*sin(y[:,0])
y1 = -L1*cos(y[:,0])

x2 = L2*sin(y[:,2]) + x1
y2 = -L2*cos(y[:,2]) + y1

fig = plt.figure()
ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2))
ax.grid()

line, = ax.plot([], [], 'o-', lw=2)
time_template = 'time = %.1fs'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)

def init():
    line.set_data([], [])
    time_text.set_text('')
    return line, time_text

def animate(i):
    thisx = [0, x1[i], x2[i]]
    thisy = [0, y1[i], y2[i]]

    line.set_data(thisx, thisy)
    time_text.set_text(time_template%(i*dt))
    return line, time_text

ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)),
    interval=25, blit=True, init_func=init)

ani.save('double_pendulum.mp4', writer='mencoder', fps=15)
# ani.save('double_pendulum.mp4', fps=15, clear_temp=True)